This one in particular is being used for API services in OpenStack and the load balancer component for my actual application is listed here, and this is the one that exposes the demochat front in service here. This process Create a pool that uses the round robin algorithm and has session persistence enabled: To ensure that control plane machines are available, create a health monitor: Add the control plane machines as members of the load balancer pool: Optional: To reuse the cluster API floating IP address, unset it: Add either the unset API_FIP or a new address to the created load balancer VIP: Your cluster now uses Octavia for load balancing. Flavor profile to add the flavor to (name or ID). New value for the health monitor quota. After the load balancer becomes active, create listeners: To view the status of the load balancer, enter openstack loadbalancer list. retuns loadbalancer_id among other attributes can be referenced by doing openstack help loadbalancer. Clear the default pool from the listener. Methods to allow this access include: Attaching the load balancer to the clusters machine subnet. endobj The IP address of the backend member server. If the configuration is correct, you receive an HTTP response: A section of a sample HAProxy configuration, networkoperator.openshift.io/kuryr-octavia-provider, a4db683b-2b7b-4988-a582-c39daaad7981 | ostest-7mbj6-kuryr-api-loadbalancer | 84c99c906edd475ba19478a9a6690efd | 172.30.0.1 | ACTIVE | amphora, 2dffe783-98ae-4048-98d0-32aa684664cc | openshift-apiserver-operator/metrics | 84c99c906edd475ba19478a9a6690efd | 172.30.167.119 | ACTIVE | ovn endobj The name or ID of the flavor for the load balancer. Enable access to the cluster from your load balancer on ports 6443, 443, and 80. Deploy a TCP load balancer. Availability zone profile to delete (name or ID). uHr=gA!C&9Xv02_I@"} wP:ZG;+$O(&zgnnBJx Uj4EOAXMjN%v`;,F=tW3tHScN_$D*BNNavbK;Ti lZfos1VC>- BE A single Amphora load balancer is displayed. The weight of a member determines the portion of requests or connections it services compared to the other members of the pool. Load balance the API port, 6443, between each of the control plane nodes. endobj <> List availability zones according to their name. If your OKD cluster uses Kuryr and was installed on a OpenStack 13 cloud Load balance the API . Set the name or ID of the pool used by the listener if no L7 policies match. From a command line, create a service from the external_router.yaml file: Verify that the external IP address of the service is the same as the one that is associated with the load balancer: On a command line, retrieve the external IP address of the service: Retrieve the IP address of the load balancer: Verify that the addresses you retrieved in the previous steps are associated with each other in the floating IP list: You can now use the value of EXTERNAL-IP as the new Ingress address. h@vZ\jPAJk&iKZ&Kbs9,Lnr-`:-k Z"h7eA[+T (F/[ oSghur#=#:-t#zfBhchW[Gc4Z$Q ~5b 1F:FteRr(3j $/YBc 0Zm~^M On your load balancer, TCP over ports 6443, 443, and 80 must be available to any users of your system. -f <FORMATTER>, --format <FORMATTER> the output format, defaults to table-c COLUMN, --column COLUMN specify the column(s) to include, can be repeated--max-width <integer> Ma Name or UUID of the load balancer to update. set-cookie: csrf-token=39HoZgztDnzjJkq/JuLJMeoKNXlfiVv2YgZc09c3TBOBU4NI6kDXaJH1LdicNhN1UsQWzon4Dor9GWGfopaTEQ==; x-content-type-options: nosniff results in some downtime. List load balancers according to their provisioning status. Except where otherwise noted, this document is licensed under On a command line, enter: In the ConfigMap, delete the line that contains kuryr-octavia-provider: default. On your load balancer, TCP over ports 6443, 443, and 80 must be available to any users of your system. CIDR to allow access to the listener (can be set multiple times). Show the details for a single availability zone, Create an octavia availability zone profile. <>/XObject<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 612 792] /Contents 4 0 R/Group<>/Tabs/S/StructParents 0>> Currently loadbalancer_id could be reached through pool, but moving to m:n relationship will complicate the process. Member Members are servers that serve traffic behind a load balancer. Provider name for the availability zone profile. Set the name of the availability zone profile. From a command line, create an Octavia load balancer that uses the Amphora driver: You can use a name of your choice instead of API_OCP_CLUSTER. A single Amphora load balancer is displayed. Load balancer for the listener (name or ID). router-external-default LoadBalancer 172.30.235.33 10.46.22.161 80:30112/TCP,443:32359/TCP,1936:30317/TCP 3m38s, router-internal-default ClusterIP 172.30.115.123 , | 21bf6afe-b498-4a16-a958-3229e83c002c | openshift-ingress/router-external-default | 66f3816acf1b431691b8d132cc9d793c | 172.30.235.33 | ACTIVE | octavia |, | e2f80e97-8266-4b69-8636-e58bacf1879e | 10.46.22.161 | 172.30.235.33 | 655e7122-806a-4e0a-a104-220c6e17bda6 | a565e55a-99e7-4d15-b4df-f9d7ee8c9deb | 66f3816acf1b431691b8d132cc9d793c |, location: https://console-openshift-console.apps., cache-control: no-cacheHTTP/1.1 200 OK There are several reasons to introduce this object: New resource Loadbalancer will be introduced with attributes reflecting corresponding model (see below). loadbalancer amphora stats show . f05b07fc-01b7-4673-bd4d-adaa4391458e | openshift-dns-operator/metrics | 84c99c906edd475ba19478a9a6690efd | 172.30.152.27 | ACTIVE | ovn, openstack loadbalancer member create --address $, ingresscontroller.operator.openshift.io/owning-ingresscontroller, ingresscontroller.operator.openshift.io/deployment-ingresscontroller, NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE on OpenStack endstream Availability zone profile to add the AZ to (name or ID). An alternate protocol port used for health monitoring a backend member. Create a pool that uses the round robin algorithm and has session persistence enabled: To ensure that control plane machines are available, create a health monitor: Add the control plane machines as members of the load balancer pool: Optional: To reuse the cluster API floating IP address, unset it: Add either the unset API_FIP or a new address to the created load balancer VIP: Your cluster now uses Octavia for load balancing. L7policy to update l7rule on (name or ID). Listener to add the pool to (name or ID). Value -1 means unlimited. - db models and logic change endobj You can delete timestamps and other information that is irrelevant to load balancing. 4 0 obj when to include quotes, defaults to nonnumeric, specify the column(s) to sort the data (columns specified first have a priority, non-existing columns are ignored), can be repeated. disable backend associated members re-encryption. Octavia is available on your OpenStack deployment. Configuring an external load balancer. Clear the certificate revocation list reference on this pool. to use an external load balancer in place of the default load balancer. --listener <listener> . set-cookie: 1e2670d92730b515ce3a1bb65da45062=9b714eb87e93cf34853e87a92d6894be; Selecting an installation method and preparing a cluster, About disconnected installation mirroring, Creating a mirror registry with mirror registry for Red Hat OpenShift, Mirroring images for a disconnected installation, Mirroring images for a disconnected installation using the oc-mirror plug-in, Creating the required Alibaba Cloud resources, Installing a cluster quickly on Alibaba Cloud, Installing a cluster on Alibaba Cloud with customizations, Installing a cluster on Alibaba Cloud with network customizations, Installing a cluster on AWS with customizations, Installing a cluster on AWS with network customizations, Installing a cluster on AWS in a restricted network, Installing a cluster on AWS into an existing VPC, Installing a cluster on AWS into a government region, Installing a cluster on AWS into a Top Secret Region, Installing a cluster on AWS into a China region, Installing a cluster on AWS using CloudFormation templates, Installing a cluster on AWS in a restricted network with user-provisioned infrastructure, Installing a cluster on Azure with customizations, Installing a cluster on Azure with network customizations, Installing a cluster on Azure into an existing VNet, Installing a cluster on Azure into a government region, Installing a cluster on Azure using ARM templates, Installing a cluster on Azure Stack Hub with an installer-provisioned infrastructure, Installing a cluster on Azure Stack Hub with network customizations, Installing a cluster on Azure Stack Hub using ARM templates, Uninstalling a cluster on Azure Stack Hub, Installing a cluster on GCP with customizations, Installing a cluster on GCP with network customizations, Installing a cluster on GCP in a restricted network, Installing a cluster on GCP into an existing VPC, Installing a cluster on GCP using Deployment Manager templates, Installing a cluster into a shared VPC on GCP using Deployment Manager templates, Installing a cluster on GCP in a restricted network with user-provisioned infrastructure, Installing a cluster on IBM Cloud VPC with customizations, Installing a cluster on IBM Cloud VPC with network customizations, Installing a user-provisioned cluster on bare metal, Installing a user-provisioned bare metal cluster with network customizations, Installing a user-provisioned bare metal cluster on a restricted network, Setting up the environment for an OpenShift installation, Installing a cluster on OpenStack with customizations, Installing a cluster on OpenStack with Kuryr, Installing a cluster that supports SR-IOV compute machines on OpenStack, Installing a cluster on OpenStack that supports OVS-DPDK-connected compute machines, Installing a cluster on OpenStack on your own infrastructure, Installing a cluster on OpenStack with Kuryr on your own infrastructure, Installing a cluster on OpenStack on your own SR-IOV infrastructure, Installing a cluster on OpenStack in a restricted network, Uninstalling a cluster on OpenStack from your own infrastructure, Installing a cluster on oVirt with customizations, Installing a cluster on oVirt with user-provisioned infrastructure, Installing a cluster on RHV in a restricted network, Installing a cluster on vSphere with customizations, Installing a cluster on vSphere with network customizations, Installing a cluster on vSphere with user-provisioned infrastructure, Installing a cluster on vSphere with user-provisioned infrastructure and network customizations, Installing a cluster on vSphere in a restricted network, Installing a cluster on vSphere in a restricted network with user-provisioned infrastructure, Uninstalling a cluster on vSphere that uses installer-provisioned infrastructure, Using the vSphere Problem Detector Operator, Installing a cluster on VMC with customizations, Installing a cluster on VMC with network customizations, Installing a cluster on VMC in a restricted network, Installing a cluster on VMC with user-provisioned infrastructure, Installing a cluster on VMC with user-provisioned infrastructure and network customizations, Installing a cluster on VMC in a restricted network with user-provisioned infrastructure, Converting a connected cluster to a disconnected cluster, Preparing to perform an EUS-to-EUS update, Performing update using canary rollout strategy, Updating hardware on nodes running on vSphere, Showing data collected by remote health monitoring, Using Insights to identify issues with your cluster, Using remote health reporting in a restricted network, Importing simple content access certificates with Insights Operator, Troubleshooting CRI-O container runtime issues, Troubleshooting the Source-to-Image process, Troubleshooting Windows container workload issues, Extending the OpenShift CLI with plug-ins, OpenShift CLI developer command reference, OpenShift CLI administrator command reference, Knative CLI (kn) for use with OpenShift Serverless, Replacing the default ingress certificate, Securing service traffic using service serving certificates, User-provided certificates for the API server, User-provided certificates for default ingress, Monitoring and cluster logging Operator component certificates, Retrieving Compliance Operator raw results, Performing advanced Compliance Operator tasks, Understanding the Custom Resource Definitions, Understanding the File Integrity Operator, Performing advanced File Integrity Operator tasks, Troubleshooting the File Integrity Operator, Allowing JavaScript-based access to the API server from additional hosts, Authentication and authorization overview, Understanding identity provider configuration, Configuring an HTPasswd identity provider, Configuring a basic authentication identity provider, Configuring a request header identity provider, Configuring a GitHub or GitHub Enterprise identity provider, Configuring an OpenID Connect identity provider, Using RBAC to define and apply permissions, Understanding and creating service accounts, Using a service account as an OAuth client, Using manual mode with AWS Secure Token Service, Using manual mode with GCP Workload Identity, Understanding the Cluster Network Operator, Configuring the Ingress Controller endpoint publishing strategy, External DNS Operator configuration parameters, Creating DNS records on an public hosted zone for AWS, Creating DNS records on an public zone for Azure, Creating DNS records on an public managed zone for GCP, Defining a default network policy for projects, Removing a pod from an additional network, About Single Root I/O Virtualization (SR-IOV) hardware networks, Configuring an SR-IOV Ethernet network attachment, Configuring an SR-IOV InfiniBand network attachment, Using pod-level bonding for secondary networks, About the OpenShift SDN default CNI network provider, Configuring an egress firewall for a project, Removing an egress firewall from a project, Considerations for the use of an egress router pod, Deploying an egress router pod in redirect mode, Deploying an egress router pod in HTTP proxy mode, Deploying an egress router pod in DNS proxy mode, Configuring an egress router pod destination list from a config map, About the OVN-Kubernetes network provider, Migrating from the OpenShift SDN cluster network provider, Rolling back to the OpenShift SDN cluster network provider, Converting to IPv4/IPv6 dual stack networking, Configuring ingress cluster traffic using an Ingress Controller, Configuring ingress cluster traffic using a load balancer, Configuring ingress cluster traffic on AWS using a Network Load Balancer, Configuring ingress cluster traffic using a service external IP, Configuring ingress cluster traffic using a NodePort, Troubleshooting node network configuration, MetalLB logging, troubleshooting and support, Associating secondary interfaces metrics to network attachments, Persistent storage using AWS Elastic Block Store, Persistent storage using GCE Persistent Disk, Persistent storage using Red Hat OpenShift Data Foundation, AWS Elastic Block Store CSI Driver Operator, AWS Elastic File Service CSI Driver Operator, Red Hat Virtualization CSI Driver Operator, Configuring the registry for AWS user-provisioned infrastructure, Configuring the registry for GCP user-provisioned infrastructure, Configuring the registry for OpenStack user-provisioned infrastructure, Configuring the registry for Azure user-provisioned infrastructure, Creating applications from installed Operators, Allowing non-cluster administrators to install Operators, Upgrading projects for newer Operator SDK versions, High-availability or single-node cluster detection and support, Configuring built-in monitoring with Prometheus, Migrating package manifest projects to bundle format, Setting up additional trusted certificate authorities for builds, Using the Cluster Samples Operator with an alternate registry, Using image streams with Kubernetes resources, Triggering updates on image stream changes, Creating applications using the Developer perspective, Viewing application composition using the Topology view, Getting started with service binding on IBM Power, IBM Z, and LinuxONE, Binding workloads using Service Binding Operator, Connecting an application to a service using the Developer perspective, Configuring custom Helm chart repositories, Understanding Deployments and DeploymentConfigs, Monitoring project and application metrics using the Developer perspective, Creating a machine set on Azure Stack Hub, Adding compute machines to user-provisioned infrastructure clusters, Adding compute machines to AWS using CloudFormation templates, Automatically scaling pods with the horizontal pod autoscaler, Automatically scaling pods with the custom metrics autoscaler, Automatically adjust pod resource levels with the vertical pod autoscaler, Using Device Manager to make devices available to nodes, Including pod priority in pod scheduling decisions, Placing pods on specific nodes using node selectors, Scheduling pods using a scheduler profile, Placing pods relative to other pods using pod affinity and anti-affinity rules, Controlling pod placement on nodes using node affinity rules, Controlling pod placement using node taints, Controlling pod placement using pod topology spread constraints, Secondary Scheduler Operator release notes, Scheduling pods using a secondary scheduler, Uninstalling the Secondary Scheduler Operator, Running background tasks on nodes automatically with daemonsets, Viewing and listing the nodes in your cluster, Managing the maximum number of pods per node, Remediating nodes with the Poison Pill Operator, Deploying node health checks by using the Node Health Check Operator, Using the Node Maintenance Operator to place nodes in maintenance mode, Freeing node resources using garbage collection, Allocating specific CPUs for nodes in a cluster, Configuring the TLS security profile for the kubelet, Using Init Containers to perform tasks before a pod is deployed, Allowing containers to consume API objects, Using port forwarding to access applications in a container, Viewing system event information in a cluster, Configuring cluster memory to meet container memory and risk requirements, Configuring your cluster to place pods on overcommited nodes, Red Hat OpenShift support for Windows Containers overview, Red Hat OpenShift support for Windows Containers release notes, Understanding Windows container workloads, Creating a Windows MachineSet object on AWS, Creating a Windows MachineSet object on Azure, Creating a Windows MachineSet object on vSphere, Using Bring-Your-Own-Host Windows instances as nodes, About the Cluster Logging custom resource, Configuring CPU and memory limits for Logging components, Using tolerations to control Logging pod placement, Moving the Logging resources with node selectors, Collecting logging data for Red Hat Support, Enabling monitoring for user-defined projects, Enabling alert routing for user-defined projects, Accessing third-party monitoring UIs and APIs, ConfigMap reference for Cluster Monitoring Operator, Planning your environment according to object maximums, What huge pages do and how they are consumed by apps, Topology Aware Lifecycle Manager for cluster updates, Deploying distributed units manually on single-node OpenShift, Validating cluster tuning for vDU application workloads, Workload partitioning on single-node OpenShift, Deploying distributed units at scale in a disconnected environment, About specialized hardware and driver enablement, Overview of backup and restore operations, Installing and configuring OADP with Azure, Advanced OADP features and functionalities, Recovering from expired control plane certificates, Installing MTC in a restricted network environment, Editing kubelet log level verbosity and gathering logs, LocalResourceAccessReview [authorization.openshift.io/v1], LocalSubjectAccessReview [authorization.openshift.io/v1], ResourceAccessReview [authorization.openshift.io/v1], SelfSubjectRulesReview [authorization.openshift.io/v1], SubjectAccessReview [authorization.openshift.io/v1], SubjectRulesReview [authorization.openshift.io/v1], LocalSubjectAccessReview [authorization.k8s.io/v1], SelfSubjectAccessReview [authorization.k8s.io/v1], SelfSubjectRulesReview [authorization.k8s.io/v1], SubjectAccessReview [authorization.k8s.io/v1], ClusterAutoscaler [autoscaling.openshift.io/v1], MachineAutoscaler [autoscaling.openshift.io/v1beta1], HelmChartRepository [helm.openshift.io/v1beta1], ImageContentPolicy [config.openshift.io/v1], ConsoleCLIDownload [console.openshift.io/v1], ConsoleExternalLogLink [console.openshift.io/v1], ConsoleNotification [console.openshift.io/v1], ConsolePlugin [console.openshift.io/v1alpha1], ConsoleQuickStart [console.openshift.io/v1], ConsoleYAMLSample [console.openshift.io/v1], CustomResourceDefinition [apiextensions.k8s.io/v1], MutatingWebhookConfiguration [admissionregistration.k8s.io/v1], ValidatingWebhookConfiguration [admissionregistration.k8s.io/v1], ImageStreamImport [image.openshift.io/v1], ImageStreamLayers [image.openshift.io/v1], ImageStreamMapping [image.openshift.io/v1], ContainerRuntimeConfig [machineconfiguration.openshift.io/v1], ControllerConfig [machineconfiguration.openshift.io/v1], KubeletConfig [machineconfiguration.openshift.io/v1], MachineConfigPool [machineconfiguration.openshift.io/v1], MachineConfig [machineconfiguration.openshift.io/v1], MachineHealthCheck [machine.openshift.io/v1beta1], MachineSet [machine.openshift.io/v1beta1], APIRequestCount [apiserver.openshift.io/v1], AlertmanagerConfig [monitoring.coreos.com/v1alpha1], PrometheusRule [monitoring.coreos.com/v1], ServiceMonitor [monitoring.coreos.com/v1], EgressNetworkPolicy [network.openshift.io/v1], EgressRouter [network.operator.openshift.io/v1], IPPool [whereabouts.cni.cncf.io/v1alpha1], NetworkAttachmentDefinition [k8s.cni.cncf.io/v1], PodNetworkConnectivityCheck [controlplane.operator.openshift.io/v1alpha1], OAuthAuthorizeToken [oauth.openshift.io/v1], OAuthClientAuthorization [oauth.openshift.io/v1], UserOAuthAccessToken [oauth.openshift.io/v1], Authentication [operator.openshift.io/v1], CloudCredential [operator.openshift.io/v1], ClusterCSIDriver [operator.openshift.io/v1], Config [imageregistry.operator.openshift.io/v1], Config [samples.operator.openshift.io/v1], CSISnapshotController [operator.openshift.io/v1], DNSRecord [ingress.operator.openshift.io/v1], ImageContentSourcePolicy [operator.openshift.io/v1alpha1], ImagePruner [imageregistry.operator.openshift.io/v1], IngressController [operator.openshift.io/v1], KubeControllerManager [operator.openshift.io/v1], KubeStorageVersionMigrator [operator.openshift.io/v1], OpenShiftAPIServer [operator.openshift.io/v1], OpenShiftControllerManager [operator.openshift.io/v1], OperatorPKI [network.operator.openshift.io/v1], CatalogSource [operators.coreos.com/v1alpha1], ClusterServiceVersion [operators.coreos.com/v1alpha1], InstallPlan [operators.coreos.com/v1alpha1], OperatorCondition [operators.coreos.com/v2], PackageManifest [packages.operators.coreos.com/v1], Subscription [operators.coreos.com/v1alpha1], HostFirmwareSettings [metal3.io/v1alpha1], ClusterRoleBinding [rbac.authorization.k8s.io/v1], ClusterRole [rbac.authorization.k8s.io/v1], RoleBinding [rbac.authorization.k8s.io/v1], ClusterRoleBinding [authorization.openshift.io/v1], ClusterRole [authorization.openshift.io/v1], RoleBindingRestriction [authorization.openshift.io/v1], RoleBinding [authorization.openshift.io/v1], AppliedClusterResourceQuota [quota.openshift.io/v1], ClusterResourceQuota [quota.openshift.io/v1], FlowSchema [flowcontrol.apiserver.k8s.io/v1beta1], PriorityLevelConfiguration [flowcontrol.apiserver.k8s.io/v1beta1], CertificateSigningRequest [certificates.k8s.io/v1], CredentialsRequest [cloudcredential.openshift.io/v1], PodSecurityPolicyReview [security.openshift.io/v1], PodSecurityPolicySelfSubjectReview [security.openshift.io/v1], PodSecurityPolicySubjectReview [security.openshift.io/v1], RangeAllocation [security.openshift.io/v1], SecurityContextConstraints [security.openshift.io/v1], CSIStorageCapacity [storage.k8s.io/v1beta1], StorageVersionMigration [migration.k8s.io/v1alpha1], VolumeSnapshot [snapshot.storage.k8s.io/v1], VolumeSnapshotClass [snapshot.storage.k8s.io/v1], VolumeSnapshotContent [snapshot.storage.k8s.io/v1], BrokerTemplateInstance [template.openshift.io/v1], TemplateInstance [template.openshift.io/v1], UserIdentityMapping [user.openshift.io/v1], DeploymentConfigRollback [apps.openshift.io/v1], Preparing your OKD cluster for OKD Virtualization, Specifying nodes for OKD Virtualization components, Installing OKD Virtualization using the web console, Installing OKD Virtualization using the CLI, Uninstalling OKD Virtualization using the web console, Uninstalling OKD Virtualization using the CLI, Additional security privileges granted for kubevirt-controller and virt-launcher, Automating Windows installation with sysprep, Triggering virtual machine failover by resolving a failed node, Installing the QEMU guest agent on virtual machines, Viewing the QEMU guest agent information for virtual machines, Managing config maps, secrets, and service accounts in virtual machines, Installing VirtIO driver on an existing Windows virtual machine, Installing VirtIO driver on a new Windows virtual machine, Working with resource quotas for virtual machines, Configuring PXE booting for virtual machines, Enabling dedicated resources for a virtual machine, Automatic importing and updating of pre-defined boot sources, Enabling descheduler evictions on virtual machines, Importing virtual machine images with data volumes, Importing virtual machine images into block storage with data volumes, Enabling user permissions to clone data volumes across namespaces, Cloning a virtual machine disk into a new data volume, Cloning a virtual machine by using a data volume template, Cloning a virtual machine disk into a new block storage data volume, Configuring the virtual machine for the default pod network with OKD Virtualization, Creating a service to expose a virtual machine, Attaching a virtual machine to a Linux bridge network, Configuring IP addresses for virtual machines, Configuring an SR-IOV network device for virtual machines, Connecting virtual machines to a service mesh, Attaching a virtual machine to an SR-IOV network, Viewing the IP address of NICs on a virtual machine, Using a MAC address pool for virtual machines, Configuring local storage for virtual machines, Reserving PVC space for file system overhead, Configuring CDI to work with namespaces that have a compute resource quota, Uploading local disk images by using the web console, Uploading local disk images by using the virtctl tool, Uploading a local disk image to a block storage data volume, Moving a local virtual machine disk to a different node, Expanding virtual storage by adding blank disk images, Cloning a data volume using smart-cloning, Using container disks with virtual machines, Re-using statically provisioned persistent volumes, Enabling dedicated resources for a virtual machine template, Deploying a virtual machine template to a custom namespace, Migrating a virtual machine instance to another node, Migrating a virtual machine over a dedicated additional network, Monitoring live migration of a virtual machine instance, Cancelling the live migration of a virtual machine instance, Configuring virtual machine eviction strategy, Managing node labeling for obsolete CPU models, Diagnosing data volumes using events and conditions, Viewing information about virtual machine workloads, Reviewing resource usage by virtual machines, OpenShift cluster monitoring, logging, and Telemetry, Exposing custom metrics for virtual machines, Backing up and restoring virtual machines, Using the Octavia OVN load balancer provider driver with Kuryr SDN, Scaling clusters for application traffic by using Octavia, Scaling clusters that use Kuryr by using Octavia, Scaling for ingress traffic by using OpenStack Octavia, Delete this line.